
COMPUTABILITY AND COMPLEXITY 24

LEARNING

AMIR YEHUDAYOFF

Remark. Computational complexity studies the resources that are needed to achieve
computational tasks. On a high-level, computational devices have costs (like time,
memory size, energy, randomness, training data, etc.), and computational tasks
have complexities (the minimum cost that is needed to achieve it).

1. The basics

We have been discussing the theory of computation. The models
we used are TMs, and circuits. The resources we focussed on were
time, space, randomness, and non-determinism. These mostly cap-
ture “classical methods” for using computers (by developing algo-
rithms). Machine learning (ML) is about “new methods” for using
computers. Instead of developing algorithms, we develop ways to
transform data into algorithms. ML leads to new models, theories
and challenges.

Remark. There are many models for ML. Most models contain components of the
following ideas:

— Data.
— A way to measure “loss” or “risk”.
— Algorithms or algorithmic principles.

We shall not survey these models, and focus on one example—the Probably Approx-
imately Correct (PAC) model.

Notation. The domain is a set X. For example, X can be the set of images (e.g.,
grayscale or RGB matrices).

Notation. We are interested in binary classification. That is, there is a function
f : X → {0, 1} that we “wish to learn”. For example, f(x) is 1 if the picture x
contains a dog, and 0 otherwise.

Notation. A data point is a pair (x, y) where x ∈ X and y ∈ {0, 1}. For example,
it is a picture x with 1, which indicates that “x contains a dog”.

Remark. The data we collect is modeled by a sequence of data points

(x1, y1), . . . , (xn, yn).

This sequence is called a sample and is denoted by S.

Definition. A learning algorithm is a function that transform samples to functions:

A : (X × {0, 1})n → {0, 1}X .
Remark. The output h = A(S) allows to make “predictions” on unseen data (on
all of X).

1

2 DIKU

On a high-level, from data generated by f but without knowing f
we wish to output h that is close to f .

Remark. This task is “too hard”. For example, what is the next element in the
sequence

1, 2, 3, 4, . . .?

We think it is 5 because we have some “context”. Without the context, any number
could be next.

Remark. The “context” of a learning problem is captured by a class of functions
H ⊆ {0, 1}X . We assume that the unknown target function f comes from H. This
is called the realizable setting.

Example. X = R2 and H is the class of linear threshold functions (LTFs). Draw
5 points in the plane that are labelled by some LTF. Choose a point x inside a
triangle with same label. What is the label of x?

Remark. How is the data generated? In “real life” we need to collect data and this
is complicated for many reasons. A standard assumption in the theory is that the
data consist of i.i.d. data points from some underlying unknown distribution. We
shall work in the “realizable” setting. Namely, there is a distribution µ on X×{0, 1}
with the following property: there is f ∈ H so that µ is supported on points of the
form (x, f(x)). The sample S is

S = ((x1, y1), . . . , (xn, yn)) ∼ µn

comprises i.i.d. draws from µ. This is the input to the learning algorithm.

Remark. The output of the learning algorithm is h = A(S) which is a function
X → {0, 1}. How can we measure the “distance” between h and f? A beautiful and
natural idea is to use µ again.

Definition. The true loss function of h : X → {0, 1} with respect to µ (a.k.a.
population loss) is

Lµ(h) = Pr
(x,y)∼µ

[h(x) 6= y].

Remark. We do not know the true loss.

Definition. The loss of algorithm A with respect to µ is

Lµ(A) = Pr
S

[Lµ(A(S))]

where S ∼ µn.

Remark. The distribution µ plays the role of “nature”. It both generates the input
data (from the past), and measures the success of the algorithm (on future data).

Definition. An algorithm A has error ε > 0 in the PAC model with respect to H
if for every H-realizable distribution µ,

Lµ(A) < ε.

(Note that, in our notation, A operates on sample of fixed length n.)

Definition. We think of H as a “learning problem”. Our “context” is that the
target function comes from H, and our goal is to learn it.

COCO 24 LEARNING 3

Definition. The sample complexity of PAC learning H is the minimum n so that
there is an algorithm that uses n samples and PAC learn H with error 1

3 .

Remark. Again, devices have costs and problems have complexities. The cost we
currently focus on is the number of data points we need to collect.

Remark. There are more parameters that we could have introduced, but we keep
it simple for this introduction.

2. A characterization

The complexity of a problem is an integer. Figuring out this integer
is fundamental and usually hard. There is a theory for computing
the PAC sample complexities of problems. This is often called VC
theory (after Vapnik and Chervonenkis).

Remark. We have a fixed learning task H ⊆ {0, 1}X and we want to figure out the
sample complexity of PAC learning it. To do so, we need a mechanism to measure
how complex H is. This is done via the VC dimension.

Remark. The VC dimension, as many other dimensions, can be defined via the
following question:

what is the largest “fully” complicated part that H contains?

Notation. Functions can be projected. Given T ⊆ X and f : X → {0, 1}, denote
by f |T the projection of f to T . It is the function T → {0, 1} that agrees with f .

Notation. Classes can be projected. Given T ⊆ X, let

H|S = {f |T : f ∈ H} ⊆ {0, 1}T .
Definition. A subset T of X is called shattered by H if

H|T = {0, 1}T .
Remark. In other words, every function on T can be realized by a function in H.

Remark. The set {0, 1}T is the “most complicated” set of functions on T .

Example. For LTFs in the plane, the VC dimension is three. There are 3 shattered
points, and no four points are shattered (sketch picture).

Definition. The VC dimension of H is the maximum size of a set that is shattered
by H. It could be infinite.

Remark. Roughly speaking, if the VC dimension is d then there are d points in
which “we have no context” and for d+ 1 points “we already have some context”.

Theorem 1. The sample complexity of PAC learning H is equal, up to universal
constants, to the VC dimension of H.

Remark. This theorem is sometimes called the fundamental theorem of statistical
learning theory.

Remark. The theorem includes two statements (where d is the VC dimension).
— The first is that o(d) samples do not suffices for PAC learning.
— The second is that O(d) samples suffices.

The first was proved by Blumer, Ehrenfeucht, Haussler and Warmuth in 1989. The
second was proved by Vapnik and Chervonenkis in 1971. The first is left as an
exercise and we shall prove the second.

4 DIKU

Remark. There are other important notions of “dimension” that appear in the
theory of ML (we shall not cover here).

Remark. We can think of H as a boolean matrix. Its rows are labelled by f ∈ H and
its columns by x ∈ X. The (f, x) position is labelled by f(x). The VC dimension
is the maximum d so that the matrix contains of a “full” 2d × d matrix.

3. ERMs

There are algorithms and there are algorithmic principles. It is
important to understand the properties of algorithmic principles
because this can help guide our choices. A natural algorithmic
principle in ML is Empirical Risk Minimization (ERM). It has pros
and cons.

Definition. The empirical loss of h : X → {0, 1} on the sample S = ((x1, y1), . . . , (xn, yn))
is

LS(h) =
1

n

∑
i

1h(xi)6=yi .

Remark. The expected value of the empirical loss is the true loss

Lµ(h) = ES∼µnLS(h)

Remark. When we get the input sample S, for each h ∈ H, we can compute the
empirical loss

LS(h).

For some h’s, this loss is high, so it is natural to “remove” them. For some h’s,
this loss is small or even zero. But there could be many such h’s. Which h should
we choose?

Remark. The ERM principle says that we may choose any h that minimizes LS(·).
Amazingly, in the PAC model, this principle leads to good results.

Theorem 2. Let H be of VC dimension d, and let n = 100d. For each sample S
of size n, let hS ∈ H be a function that minimizes LS. Then, for all H-realizable
µ,

ES∼µnLµ(hS) <
1

3
.

Remark. One reason this is not trivial is that hS depends on S.

4. Uniform convergence

Remark. We can always compute LS(h) but we do not really know Lµ(h). It will
be great if we knew that LS(h) is a good proxy for Lµ(h). If we a priori fix some h
we can about, then this is true. But when there are many possible h’s, this may no
longer be true.

Definition. The class H satisfies uniform convergence with sample size n if

Pr
[
∃h ∈ H |LS(h)− Lµ(h)| ≥ 1

3

]
≤ 1

3
.

Remark. Uniform convergence implies that ERMs always perform well. It says
something like “what we see is what we get”. It also says that there is no fear of
“overfitting”.

COCO 24 LEARNING 5

Remark. In “real life” uniform convergence is often too good to be true.

Remark. The sample complexity for PAC learning is at most O(the sample com-
plexity of uniform convergence).

Theorem 3. The sample complexity of uniform convergence is at most O(the VC
dimension).

5. Structure

The analysis of uniform convergence as well as many other impor-
tant results in PAC learning relies on a basic combinatorial state-
ment (known as the Sauer-Shelah-Perles lemma).

Lemma 4. If H ⊂ {0, 1}X has VC dimension d and |X| = k then

|H| ≤
d∑
i=0

(
k

i

)
.

Remark. It is often helpful to find the simplest expression even if it is only ap-
proximately correct:

d∑
i=0

(
k

i

)
≤
(ek
d

)d
.

This say that roughly speaking the size of H is kd which is much smaller than 2k.
Indeed, because 1− x ≤ ex for all x ∈ R,(d

k

)d d∑
i=0

(
k

i

)
≤

d∑
i=0

(d
k

)i(k
i

)

≤
n∑
i=0

(d
k

)i
1n−i

(
k

i

)
=
(

1 +
d

k

)k
≤ ed.

Remark. There are many proof of this lemma: by induction, using shifting, using
algebra, etc. Here is a sketch of a proof using algebra.

Sketch. Let |X| = n and think of H as a subset of {0, 1}n. Consider the space
of functions {0, 1}n → R. It is a 2n-dimensional vector space. Write each point
x ∈ {0, 1}n as x = (x1, . . . , xn). Every function v in this space can be written as a
multilinear polynomial:

v(x) =
∑
S⊆[n]

aS
∏
i∈S

xi.

(Prove this.) Now, consider the space of functions H → R. It is a vector space of
dimension |H|. The main claim is that every function u in this (sub) vector space
can be written as

u(x) =
∑

S:|S|≤d

aS
∏
i∈S

xi.

This completes the proof of the lemma. To key step is the following: let T ⊆ [n]
be of size |T | > d. This means that some pattern from {0, 1}T is missing from

6 DIKU

H|T . Assume, for simplicity, this pattern is the all-zeros vector (the other cases are
similar). This means that for all x ∈ H,∏

i∈T
(1− xi) = 0.

In other words, the monomial
∏
i∈T xi can be written as a linear combination of

monomials of lower degree (as a function on H). Now, the proof of the main claim
is by first writing u(x) as a polynomial of arbitrary degree, and then reducing the
degree to be at most d by the above. �

Remark. The lemma leads to the following dichotomy. For every class of functions
H, exactly one of the following holds:

— there are larger and larger sets T ⊆ X so that

|H|T | = 2|T |

— there is d so that for all T ,

|H|T | ≤ (|T |+ 1)d

In other words, either there is exponential growth or polynomial growth. There is
nothing in between.

Remark. On a high-level, if the VC dimension of H is d then the projection of
H to sets of size n � d is of size ≈ nd � 2d. VC found a beautiful argument for
proving that this property implies that ERMs are well-behaved. This idea is called
“double sampling”. Here is a sketch.

Let S ∼ µn. We want to upper bound the chance of the “bad” event

B = {∃h ∈ H |LS(h)− Lµ(h)| > 1
10}.

This is when ERMs might fail. To analyze this, imagine sampling another S′ ∼ µn
independently of S. This sample is just used in the proof! The first part of the
proof shows that

Pr[B] ≤ 2 Pr
[
∃h ∈ H |LS(h)− Lµ(h)| > 1

10 , |LS′(h)− Lµ(h)| < 1
20

]
.

Let us see why this is true (for a finite or countable space). For each S ∈ B, let

B′(S) =
⋃

h:|LS(h)−Lµ(h)|>
1
10

{S′ : |LS′(h)− Lµ(h)| < 1
20}.

For each S ∈ B, there exists fS so that |LS(h)− Lµ(h)| > 1
10 and so

Pr
S′

[B′(S)] ≥ Pr
S′

[|LS′(fS)− Lµ(fS)| < 1
20] ≥ 1

2
.

(The last inequality holds for a fixed function as long as n ≥ 1000.) So,

Pr
[
∃h ∈ H |LS(h)− Lµ(h)| > 1

10 , |LS′(h)− Lµ(h)| < 1
20

]
=
∑
S

Pr[S] Pr[B′(S)]

≥
∑
S

Pr[S]
1

2
=

Pr[B]

2
.

The second part of the proof is about changing a perspective. We can think of first
taking a sample of size 2n and randomly partitioning it to two parts S, S′. If we fix

COCO 24 LEARNING 7

2n points T = (x1, . . . , x2n), then in H|T there are at most ≈ (2n)d functions. For
each function, the chance that a random partition to two parts is “highly unbalanced”
is exponentially small in n. (Try to fill in the gaps.)

6. Summary

We discuss the PAC model for machine learning. There are other models one
can think of (online learning, sample compression schemes, distribution dependent
models, and more). Each model has pros and cons.

	1. The basics
	2. A characterization
	3. ERMs
	4. Uniform convergence
	5. Structure
	6. Summary

